陶瓷材料的原子通过共价键、离子键结合,而金属材料通过金属键相结合,所以陶瓷材料与金属材料有完全不同的性质。陶瓷材料在常温下对剪切应力的变形阻力很大,且硬度很高。由于陶瓷晶体是由阳离子和阴离子以及它们之间的化学键组成的,化学键具有方向性、原子堆积密度低、原子间距大,使陶瓷显示出很大的脆性,加工产生的缺陷多,所以是典型的难加工材料。发展高效低成本的加工技术十分重要。
陶瓷精密加工陶瓷材料的车磨削加工技术陶瓷材料的脆性极高,似乎很难将陶瓷与车削联系起来,但是陶瓷材料的压痕实验表明如果选用合适的金刚石刀具角度和切削参数仍然可以实现陶瓷材料的延性加工。相关的实验也表明采用超硬刀具材料都可以加工陶瓷材料。李湘钒超精密车削陶瓷材料的实验表明采用W-Co类硬质合金可以加工陶瓷零件。日本的原昭夫曾采用聚晶金刚石刀具车削Al2O3和Si3N4陶瓷。目前车削陶瓷材料主要选用金刚石刀具。在刃磨性能上单晶金刚石刀具优于聚晶金刚石刀具,它们都属于微量切削,去除率较低,加工质量和精度难以保证,还有待于进一步的研究。
磨削可以满足硬金属的加工要求,因而也可以成为陶瓷材料的主要加工方法,其精度和效率比较适中。磨削陶瓷材料一般选用金刚石砂轮,金刚石砂轮磨削材料时磨粒切人工件,磨粒切削刃前方的陶瓷表面材料受到挤压,当压力值超过陶瓷材料承受极限时被压溃,形成碎屑。同时磨粒切人工件时,由于压应力和摩擦热的作用,磨粒下方的材料会产生局部塑性流动,形成变形层,当磨粒切出时,由于应力的消失,引起变形层从工件上脱离形成切屑。从成屑机理上看陶瓷
陶瓷雕铣机材料的去除方式仍然是脆性的。磨削加工后的表面残留了大量的加工缺陷,因此深加工就成为必然的工序。为了降低深加工的成本,近年来提出了延性域磨削的概念。延性域磨削以提高磨削表面质量为主要目标,采用调整磨粒排布方式以及精密修整等技术来实现陶瓷材料的高效精密加工。陶瓷材料的磨削还存在砂轮磨损堵塞以及加工效率低等问题,这些问题有待于进一步的研究。
陶瓷雕铣机是一种科技含量高、高精度的数控机床。陶瓷雕铣机可以加工各种工业陶瓷材料,氧化铝陶瓷氧化锆陶瓷,氧化铍陶瓷氮化铝陶瓷氮化硅陶瓷等,用来制作各种图纸要求的异形件和结构件,针对工业陶瓷材料的打孔开槽螺纹加工微孔加工都可以使用陶瓷专用雕铣机来进行快速加工。陶瓷专用雕铣机机床运行稳定可靠、加工质量精度高、故障率低、生产成本低、生产效率高、操作简单方便安全所有零件全部经过高精度研磨加工,精度高,经久耐用。